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Acid—base balance may influence risk for
insulin resistance syndrome by modulating
cortisol output
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Summary Frank metabolic acidosis is known to promote renal excretion of hydrogen ion by induction of glutaminase
and other enzymes in the renal tubules. This induction, at least in part, reflects an increase in pituitary output of
ACTH and a consequent increased production of cortisol and aldosterone; these latter hormones act on the renal
tubules to promote generation of ammonia, which expedites renal acid excretion. Recent evidence suggests that the
moderate metabolic acidosis associated with a protein-rich diet low in organic potassium salts — quantifiable by net
acid output in daily urine — can likewise evoke a modest increase in cortisol production. Since cortisol promotes
development of visceral obesity, and has a direct negative impact on insulin function throughout the body, even a
modest sustained up-regulation of cortisol production may have the potential to increase risk for insulin resistance
syndrome and type 2 diabetes. This thesis appears to be consistent with previous epidemiological reports correlating
high potassium consumption, or a high intake of fruits and vegetables, with reduced risk for diabetes and coronary
disease. Future prospective epidemiology should assess whether the estimated acid—base balance of habitual diets —
calculated from the ratio of dietary protein and potassium — correlates with risk for insulin resistance syndrome and
diabetes.

© 2004 Elsevier Ltd. All rights reserved,

Acid—base balance as a determinant
of cortisol production

Remer and colleagues [1], in a crossover study
examining physiological effects of three diets — a
"normal protein” omnivore diet, a higher protein
omnivore diet, and a relatively low protein lacto-
vegetarian diet (50 g protein daily) — found that
24-h urinary excretion of cortisol was about 30%
lower (p < 0.01) on the latter diet than on the
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normal protein diet. Conversely, this parameter
trended higher on the high-protein as compared to
the normal protein diet, though this difference did
not achieve statistical significance. The authors
characterize 24-h urine cortisol as “the most direct
and reliable practical index of cortisol secretion.”
These findings suggest that dietary protein intakes
somehow modulate the HPA axis.

Remer later employed these findings to ratio-
nalize another curious finding. Longcope et al. [2],
in a cross-sectional study, correlated sex hormone-
binding globulin (SHBG) levels with dietary intakes,
and found a negative correlation between SHBG
and dietary protein; no such correlation was seen
with dietary carbohydrate. Inasmuch as insulin is a
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well known negative regulator of hepatic SHBG
production, the authors suggested that the ability
of protein to potentiate carbohydrate-evoked in-
sulin secretion mediated the apparent impact of
dietary protein on SHBG. Yet this explanation
seemed inconsistent with the neutral impact of
dietary carbohydrate in this regard. Remer, noting
that cortisol is another negative modulator of SHBG
production, suggested that the increased cortisol
production evoked by higher-protein diets might
explain the negative association of dietary protein
and SHBG [3].

The very recent findings of Maurer and col-
leagues [4] may help to rationalize the apparent
impact of dietary protein on cortisol production.
These investigators looked at serum levels of cor-
tisol, and urinary excretion of total cortisol me-
tabolites, when sodium and potassium chloride
were replaced by equimolar amounts of sodium and
potassium bicarbonate within the context of an
otherwise constant diet under metabolic ward
conditions; the latter regimen was intended to
have an alkalinizing impact on systemic metabo-
lism. 24-h urinary excretion of cortisol, and of the
major cortisol metabolites, was found to be sig-
nificantly lower when the bicarbonates were ad-
ministered.

Indeed, there is much previous evidence that
chronic metabolic acidosis is associated with
increased glucocorticoid production. Acidosis up-
regulates expression of glutaminase in kidney
tubules; the evolved ammonia acts as a buffer
that aids excretion of excess protons [5—7]. The
physiological trigger for this induction of gluta-
minase appears to be an increased adrenal pro-
duction of both cortisol and aldosterone — in turn
reflective of increased ACTH release [8—10]. Ma-
urer’s findings suggest that an analogous (though
more subtle) effect may be evoked by normal
dietary conditions which provoke mild systemic
acidosis — e.g. a high-protein diet relatively poor
in potassium-rich fruits and vegetables, The cor-
relation of dietary protein with urinary cortisol
output noted by Remer could then be rationalized
by the acidifying impact of a high dietary protein
intake.

Investigators have long known that certain diets
are typically associated with an acidic urine,
whereas other diets promote a more alkaline urine;
high protein diets usually fall into the former cat-
egory, whereas plant-based diets rich in potassium
fall into the latter [11,12]. The acidifying impact of
protein reflects the fact that methionine and cys-
teine are metabolized to yield free sulfuric acid.
Conversely, organic anions present in food that
yield bicarbonate when metabolized —~ for e.g.,

citrate — have a countervailing alkalinizing impact
[13,14]. Since these anions are found in association
with cations — most prominently the electrolyte
potassium — the dietary potassium content (ex-
clusive of any supplemented potassium chloride)
can serve as a good rough index of the diet’s al-
kalinizing potential, and the ratio of dietary pro-
tein to dietary potassium can provide a useful
estimate of a diet’s net impact on acid—base bal-
ance [12]. This phenomenon has been studied pri-
marily in regard to bone density, inasmuch as
metabolic generation of acid promotes release of
phosphate from bone mineral as a buffering strat-
egy, and thus tends to diminish bone density.
Conversely, diets which generate bicarbonate
buffer tend to have a favorable effect on bone, as
demonstrated by the many studies correlating high
intakes of potassium-rich fruits and vegetables
with improved bone density; [15—17] more
acutely, supplementation with alkaline potassium
salts has a favorable impact on indices of bone
catabolism [18,19]. (The association of protein in-
take with bone status has been found to more
complex, probably reflecting the fact that dietary
protein can have some countervailing favorable
effects on bone metabolism.) The considerations
cited above suggest that the acid—base balance of
diets can have metabolic implications that extend
beyond bone health.

Cortisol modulation of insulin function

It is clear that prolonged frank hyperglucocorti-
coidism — as seen in Cushing’s syndrome, or
during clinical use of high-dose glucocorticoids —
tends to promote visceral obesity, compromises
insulin sensitivity, and increases risk for insulin
resistance syndrome and diabetes. Although
glucocorticoids can act directly on skeletal muscle
to compromise its insulin responsiveness, induc-
tion of global insulin resistance syndrome may
reflect an impact of glucocorticoids on adipocytes
— most notably visceral, but also subcutaneous
abdominal adipocytes. Visceral adipocytes appear
to be most responsive to glucocorticoids, both
because they express more glucocorticoid recep-
tors than subcutaneous adipocytes do [20,21], and
also possibly become the stromal tissue in visceral
fat stores has higher activity of the type 1 11p-
hydroxysteroid dehydrogenase, which converts
{inactive) cortisone to (active) cortisol [22].
Glucocorticoids act on adipocytes to boost their
activity of lipoprotein lipase, while simultaneously
suppressing the ability to insulin to promote
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glucose uptake by adipocytes [23—28]. This im-
plies that, following fatty meals, glucocorticoid-
primed visceral adipocytes should efficiently
cleave triglycerides in circulating chylomicrons,
but do an inefficient job of esterifying and storing
the evolved free fatty acids, resulting in a large
postprandial surge in serum free fatty acids that
may be a key mediator of the range of phenomena
associated with insulin resistance syndrome and,
ultimately, type 2 diabetes [29—31]. The selective
central accumulation of fat characteristic of pro-
longed corticosteroid excess may reflect site-
specific suppression of the in vivo activity of
hormone-sensitive lipase; [32] the resulting hy-
pertrophy of central adipocytes can be expected
to exacerbate their relative insulin resistance.
Conceivably, the greater pathogenicity of certain
adipose depots with respect to insulin resistance
syndrome reflects their greater sensitivity to
glucocorticoids, and their propensity to down-
regulate hormene-sensitive lipase (and thus to
hypertrophy) in response to glucocorticoids.

Many investigators have suggested that more
moderate physiological up-regulations of cortisol
production — as are seen in chronic stress, for
e.g. — may likewise promote development of in-
sulin resistance syndrome [33—38] In this regard,
Seckl and colleagues [35] have suggested that the
tendency of low-weight-for-gestational-age babies
to be at increased risk for insulin resistance syn-
drome during adulthood, may possibly reflect
chronic up-regulation of the HPA axis stemming
from excessive glucocorticoid exposure in utero
during the last trimester. High glucocorticoid ex-
posure during this critical time, in addition to
suppressing growth of the fetus, is thought to lead
to a permanent down-regulation of hypothalamic
glucocorticoid receptors that mediate feedback
control of ACTH production; as a result, chronic
up-regulation of the HPA axis is observed that
promotes insulin resistance syndrome in middle
age [39]. Another condition associated with in-
creased cortisol production — endogenous de-
pression — has likewise been linked to insulin
resistance and glucose intolerance [40]. In mono-
zygotic twins discordant for obesity, visceral but
not gynoid obesity is associated with increased
psychosocial stress [41]. A polymorphism of the
glucocorticoid receptor gene correlates with
insulin resistance in obese women [42]. and in-
creased dermal sensitivity to glucocorticoids also
correlates with insulin resistance [43]. These
findings are thus concordant with the intuitively
appealing proposition that modest up-regulation
of cortisol production and/or sensitivity increases
risk for insulin resistance syndrome.

An "alkaline diet” may decrease risk for
insulin resistance syndrome

These considerations suggest the intriguing possi-
bility that — other factors being equal — a diet
which promotes an acidic metabolic environment
will tend to promote visceral obesity and insulin
resistance syndrome via a modest up-regulation of
cortisol production — whereas diets promoting a
more alkaline metabolic environment may be pro-
tective in this regard. Of course, countervailing
factors may come into play — notably, a diet quite
high in protein, while acidifying, also has a favor-
able effect on appetite control that can promote
leanness and thus act to improve insulin sensitivity
[44,45]. But conceivably it would be even more
useful in this regard if accompanied by a high in-
take of potassium- rich fruits and vegetables that
buffers the acidifying impact of the protein.

These considerations perhaps explain an in-
triguing decade-old observation. Prospective anal-
ysis of data from the Nurses’ Health Study revealed
that risk of newly developing type 2 diabetes over 6
years of follow-up was about 40% lower in women
whose baseline energy-adjusted potassium intake
was in the highest quintile, as compared to those in
the lowest quintile [46]. Conceivably, a portion of
this effect reflects the fact that potassium- rich
diets tend to be higher in whole foods that are
somewhat lower in glycemic index and caloric
density than the over-refined foods that predomi-
nate in many modern diets [47,48]. But the mag-
nitude of the observed effect suggests that
additional factors may be at play. Thus, it is pos-
tulated that a more alkaline metabolism contrib-
utes to the noted protection from diabetes enjoyed
by those with high potassium intakes,

Surprisingly, a MedLine review fails to turn up
any subsequent prospective epidemiology that has
examined the impact of dietary potassium on risk
for diabetes or insulin resistance syndrome. There
is however one prospective study reporting lower
risk for diabetes in women with high intakes of
salad vegetables; fruit intake also correlated neg-
atively (though not significantly) with diabetes risk
in this study [49]. Conceivably, a favorable impact
of potassium-rich diets on risk for insulin resistance
syndrome contributes to the reduced cardiovascu-
lar risk associated with diets high in fruits and
vegetables [50,51].

Conversely, Ludwig and colleagues [52,53], ex-
amining data from the CARDIA Study, have ob-
served that higher intakes of protein are associated
with increased risk for weight gain and for insulin
resistance syndrome. (Note, however, that few
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people in such studies would be expected to con-
Sume, on a continuing basis, the relatively high
intakes of protein associated with improved appe-
tite control.)

In passing, it may be noted that the apparent
ability of a potassium-rich diet to regulate cortisol
production might play a role in another interesting
phenomenon — potassium bicarbonate supple-
mentation has been found to decrease protein ca-
tabolism in postmenopausal women [54]. Whether
mild metabolic acidosis might have a more direct
impact on muscle protein turnover also deserves
consideration.

| propose that, using dietary protein/potassium
ratio, or some equivalent rough marker for the
impact of diet on acid—base status, epidemiolo-
gists should examine the impact of acid—base sta-
tus at baseline to subsequent risk for insulin
resistance syndrome and type 2 diabetes. If such
studies do indeed point to alkaline diets as being
protective in this regard, it will provide an addi-
tional rationale for recommending high intakes of
fruits and vegetables (and/or supplemental organic
potassium salts), particularly for individuals who
chose to consume high amounts of dietary protein.
(Such a recommendation is advisable in any case,
owing to the impact of acid—base status on main-
tenance of bone density [18,55,56], and of course
the many other health benefits conferred by an
ample intake of fruits and vegetables.)
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