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Compart_ed to the prehistoric diet, the modern human diet contains not only excessive NaCl and deficient K*, but
also deficient precursors of HCO,~ and sometimes excessive precursors of nonvolatile acid. The mismatch
between the modern diet and the still ancient biological machinery of humans subtly but chronically disorders their
internal milieu, giving rise to a prolonged state of low-grade potassium deficiency and low-grade metabolic
acidosis whose severity increases with age. Supplemental KCI cannot redress this mismatch and correct this
state. However, the mismatch is redressed and the state corrected by restoring intakes of K* and HCO;™ to levels
approaching those in the diet of our prehistoric forebearers, with either fruits and vegetables or with supplemental
KHCO,. So restored, KHCOj, can: 1) attenuate hypertension and possibly prevent its occurrence by suppressing the
phenomenon of normotensive NaCl-sensitivity, in part by its natriuretic effect; (2) prevent kidney stones by
reducing urinary excretion of calcium and increasing urinary excretion of citrate; (3) ameliorate and protect against
the ocecurrence of osteoporosis by increasing the renal retention of calcium and phosphorus, and by suppressing

bone resorption and enhancing bone formation; and (4) likely prevent stroke.
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OTASSIUM CHLORIDE has long been the

preferred potassium salt given to correct hy-
pokalemia in the clinical setting of hypochloremic
alkalosis and persisting chloride depletion.! How-
ever, it is now clear that supplemental K-citrate,
can readily correct the modest to moderate hypo-
kalemia induced by hydrochlorothiazide in the rel-
atively small dosages currently used to treat either
hypertension or kidney stones,>* at least in sub-
jects in whom dietary chloride is not severely
restricted. K-citrate or KHCO; can do so without
inducing alkalosis.2? In fact, over time, KHCO;
can correct hypochloremic alkalosis and severe
hypokalemia when dietary Cl™ is provided at only
a modest intake of NaCl.#

THE QUESTION

With respect to the optimal choice of a supple-
mental potassium salt to correct K™ deficiency, the
major public health question today is not whether
KC1 should be supplemented to expeditiously cor-
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rect hypokalemia and an attendent hypochloremic
alkalosis. Rather, the major question is whether
supplemental KHCO; can prevent or treat diseases
of major public health importance by correcting
the modern diet’s generally unrecognized deficien-
cies of both potassium and bicarbonate (as bicar-
bonate-yielding organic anions). The deficiencies
are generally unrecognized because they are not
usually severe enough to cause either hypokalemia
or metabolic acidosis, at least as either is tradition-
ally characterizeds® (see below).

THE MISMATCH

The deficiency of K" and HCO; ™, like the ex-
cess of Na* in the modern diet, must be considered
in the context of human evolution.%10 The diet of
our prehistoric human forebearers contained large
amounts of K* and HCO, -yielding precursors,
eg, citrate (from fruits and vegetables, which con-
tain little C17), but little of the then scarce NaCl,
160 to 200 and 40 to 70 mmol per day, respec-
tively. Thus, over millions of years, humans
evolved biological machinery to process this pre-
historic dietary mix into an internal milieu of elec-
trolytes and alkalinity optimally conducive to bio-
logical health. However, in modern times, the mix
of minerals in the human diet has changed drasti-
cally: K+ and HCO, ™ -yielding substances are now
much lower and Na* and C1™ much higher (Fig).
In fact, in humans, the prehistoric dietary K*/Na*t
ratio has become reversed, and in the United
States, the extent of that reversal increases with
age.!! Yet, our mineral-processing biological ma-
chinery has remained essentially unchanged, ge-
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Fig. Hypothesis on the possible links between dietary electrolytes, the kidney, essential hypertension, kidney
stones, and osteoporosis: possible roles of excessive dietary sodium, chloride and acid and deficient potassium
and alkali. Modified and reprinted with permission from MacGregor and Cappuccio.”® The underlined dietary
determinants and pathogenetic events are those specified in the hypothesis as originally formuiated and depicted
by these authors. In the formulation shown here, ‘osteoporosis’ has replaced the original term ‘bone demineral-

ization.’

netically fixed in prehistoric time, Thus, the new
mix of minerals in the modern diet is profoundly
mismatched to our still ancient biological machin-
ery. By chronically disordering the body’s internal
milieu, this dietary mismatch contributes critically
to the expression of such “maladies of civiliza-
tion”!2 as hypertension, kidney stones, 0Steoporo-
sis, and stroke.

THE DISEASES
Hypertension

MacGregor and his colleagues!? have long con-
sidered Na™ to be the major electrolytic pathogen
of the modern diet. In a recent article entitled “The
Kidney and Essential Hypertension: A Link to
Osteoporosis?,” they propose that in “salt-replete
patients with essential hypertension, a genetic de-
fect in the ability of the kidney to excrete sodium”
gives rise not only to hypertension but also to
hypercalciuria and a negative calcium balance that
leads to the occurrence of both kidney stones and
“bone demineralization” (Fig).

In accordance with the hypothesis, MacGregor
et al'4 showed some time ago that either restriction

of dietary NaCl'4 or supplemental KCl attenuates
essential hypertension.'s All supplemental potas-
sium salts can have an antihypertensive effect be-
cause they natriuretically contract extracellular
fluid/blood volume, 6 an expansion of which is the
only pathophysiological determinant of either hy-
pertension or hypercalciuria identified in the for-
mulation of MacGregor and Cappuccio.!3 (Fig).
Yet, whereas supplemental KHCO, and KCI ap-
pear to be similarly natriuretic,!7 the two potassium
salts have recently been found to induce opposite
effects on the hypertension, stroke, nephropathy,
and plasma renin activity (PRA) of the stroke-
prone spontaneously hypertensive rat (SHRSP),
without inducing detectable differences in urinary
excretions of Na™ or K™ or in body weight or
hematocrit, 18

In the SHRSP fed a normal NaCl diet, supple-
menting dietary K™ with KCI exacerbated hyper-
tension, whereas supplementing either KHCO; or
potassium citrate (KB/C) attenuated hypertension,
when blood pressure (BP) was measured radio-
telemetrically, directly, and continually. Supple-
mental KCI, but not KB/C, induced strokes, which
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occurred in all and only those rats in the highest
quartiles of both BP and PRA. The level of PRA
was abnormally high with KCl but not with XB/C,
and varied directly with that of systolic BP as a
continuous function across all treatment groups.
The severity of angiopathic nephropathy varied
directly with the levels of systolic BP and PRA as
a continuous function across all treatment
groups.'® These observations show that, with re-
spect to severity of hypertension, frequency of
stroke, and severity of nephropathy, the phenotypic
expression of the SHRSP is: (1) either increased or
not, depending on whether the anionic component
of the potassium salt supplemented is or is not C1™;
(2) increased by supplementing Cl~ without sup-
plementing Na™, and despite supplementing K™;
and hence (3) both selectively Cl™ -sensitive and
Cl™-determined. The observations suggest that in
the SHRSP selectively supplemented with Cl™ the
likelihood of stroke and severity of nephropathy
depends on the extent to which both BP and PRA
are increased by Cl™.

These results might have been predicted. Selec-
tively supplementing dietary C1~ can induce and
enhance renal vasoconstriction?0 that likely affects
the afferent arteriole,?! possibly by activating the
tubuloglomerular feed-back response,?2 which is
exaggerated in the stroke-resistant SHR,>* the
strain from which the SHRSP is derived.?* In the
SHR and presumably also in the SHRSP, narrow-
ing of the afferent arteriole may give rise to hy-
pertension.2s The extent of that narrowing in the
SHR varies directly with the severity of its phar-
macologically attenuated hypertension.2s Thus, by
augmenting that narrowing in the SHRSP, supple-
mental KCl might both exacerbate hypertension
and increase PRA,!® angiotensin II, and aldoste-
rone, and thereby induce stroke and exacerbate
renal angiopathy,'® much as might loading dietary
C1™ with NaCl.26.27

In a recent study of patients selected only for
essential hypertension, supplementing dietary K"
with KHCO; induced at 8 weeks a significant,
persisting attenuation of hypertension compared
with placebo, whereas similarly supplemented KCl
did not.28 On the basis of a recently completed
study of 140 patients selected only for hyperten-
sion, we would conclude that supplemental
KHCO, and KCI at 16 weeks are both effective
antihypertensive agents and that KHCO; is at least
as effective as KCI (unpublished observations).
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The question can be asked: Would the hyperten-
sion of patients selected for normal or high levels
of PRA be more attenuated by supplemental
KHCO, than KCI? Sealey et al?® have pointed out
that even normal levels of PRA are abnormally
high in hypertensive patients because hypertension
per se should suppress PRA. They have proposed
that such unsuppressed levels of PRA reflect an
abnormal increased renal release of renin, as might
occur with pathological narrowing of only some
afferent arterioles. Clearly, such narrowing can
occur. Whether its extent and associated hyperten-
sion might be more susceptible to attenuation with
KHCO, than with KCl remains to be determined.

Can supplemental KHCO; prevent hyperten-
sion? In 41 metabolically controlled studies of 38
healthy normotensive men (24 black men and 14
white men), we recently showed that in most of the
blacks but not the whites, salt sensitivity occurred
when dietary K™ was even marginally deficient, 30
mmol per day, but not attended by hypokalemia, as
judged by a fasting serum concentration of K" of
4.0 mmol/L. However, the pressor effect of NaCl
loading was dose-dependently suppressed when
dietary K was increased to 70 and 120 mmol/L.
per day by supplemental KHCO;.# Because nor-
motensive salt sensitivity is a likely and possibly
common precursor of hypertension,3 such sup-
pression might prevent or delay the occurrence of
hypertension, particularly in the many blacks in
whom dietary K™ is deficient.!! Predictably, over
the mainly normal range of dietary K™ studied, the
serum concentration of K+ remained well within
the normal range, increasing only minimally when
KHCO, was supplemented. However, supplemental
KHCO, dose-dependently reversed and ultimately
more than abolished the large hypercalciuric effect
of NaCl loading. In those who are salt sensitive,
and in whom dietary calcium is suboptimal as in
the normotensive subjects studied, dietary replen-
ishment of calcium may reduce BP.3! Accordingly,
a calcium-retaining effect of KHCO4323 might
have contributed to its reversal of the pressor effect
of dietary NaCl. Similarly, the abundant K™ and
HCO, -yielding anions (like citrate) in fruits and
vegetables could mediate the hypocalciuric®* and
likely calcium-retaining effect of these foods, and
thereby contribute both to their antipressor effect
and its enhancement by calcium-rich dairy prod-
ucts.33
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Kidney Stones

Hypercalciuria is a major risk factor for the
development of kidney stones,? and both phenom-
ena are reported to occur with increased frequency
in patients with essential hypertension.3? Dietary
NaCl is a major determinant of urinary calcium.38
However, in a recent epidemiological study of
51,529 men conducted prospectively over 4 years,
the incidence of symptomatic kidney stones did not
correlate with dietary Na™*, but did correlate
strongly and negatively with dietary K™ over a
broad but normal range, and directly with the di-
etary intake of meat.3® As noted, dietary K™ is
derived mainly from foods poor in CI™ but rich in
organates, which are converted in vivo to HCO, ™.
Dietary K* and HCO, ™ can both exert important
effects on the urinary excretion of calcium (Fig). In
normal humans#0-42 as well as in patients with
essential hypertension,*143 dietary depletion of K*
induces increased urinary excretion of calcium.
This phenomenon may reflect in part the fact that
even minimal dietary depletion of K* evokes a
restricted renal capacity to excrete NaCl 4+ that,
combined with a continued unrestricted dietary
intake of NaCl, can apparently lead to an expanded
blood volume and, in consequence, an increased
urinary excretion of calcium*®4! However, like
hydrochlorothiazide,546 K™ directly and strongly
stimulates calcium reabsorption in the distal renal
tubule, apparently by enhancing its luminal mem-
brane transport*¢ while at the same time inhibiting
Na* transport in this membrane.6 Such a dichot-
omy of effects also appears to occur with KHCO,.
In humans, either supplemental KHCO; or admin-
istration of chlorothiazide induces an immediate,
substantial reduction in urinary excretion of cal-
cium?324247 while also inducing a natriuresis.842
HCO,™ appears to exert a hypocalciuric effect in
addition to that of K*.4¢ In normal humans,
KHCO; is hypocalciuric and KCl is not.#® In a
recently completed study of people selected only
for essential hypertension, we observed that sup-
plemental KHCOj;, but not KCI, had a significant
hypocalciuric effect (unpublished data).

In addition to hypercalciuria, diminished urinary
excretion of citrate is a major risk factor for the
formation of kidney stones?5° (Fig), in part be-
cause urinary citrate normally complexes urinary
calcium in a soluble form. Urinary citrate normally
inhibits not only the growth of individual crystals
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(eg, calcium oxalate) but also crystal agglomera-
tion, the conjoining of multiple crystals into larger
masses that become clinical kidney stones.5! Hy-
pocitraturia occurs with even modest K™ defi-
ciency, presumably because it enhances the net
renal tubular reabsorption of filtered citrate,52-53
possibly by inducing intracellular acidosis in the
proximal renal tubule5* that may increase both the
Na™-coupled luminal membrane transport of ci-
trate>S and its mitochondrial metabolism.52 Under
normal physiological circumstances, administra-
tion of KHCO, (or K™ citrate) induces not only a
reduction in the urinary excretion of calcium42.56
but also an increase in urinary citrate4?49.52 This
citraturic effect of K™ citrate is not greater than
that of KHCO,.4°

Decreases in the urinary excretion of citrate, as
well as increases in urinary calcium57 are predict-
ably induced by high-meat diets>! because meat
and other animal proteins are rich in amino acids
that are metabolized to nonvolatile acid. The typ-
ical American diet constitutes an acid load of some
1 to 2 mmol/Kg per day. Such acidogenic diets
titrate the plasma HCO,;™ concentration to a value
slightly lower than it would be otherwise, and even
small reductions in the plasma HCO,~ concentra-
tion can enhance renal reabsorption of citrate and
reduce its excretion.52

Osteoporosis

The acid generated from acidogenic diets can
titrate bone.5¥ A metabolic bone disorder like that
of osteoporosis can be induced in the rat by ren-
dering it chronically, mildly acidotic with
NH,CL* Osteoporosis is described in patients
with untreated renal tubular acidosis.5® In infants
and children with classic renal tubular acidosis
(type 1), sustained correction of acidosis with al-
kali as either KHCO, or NaHCO; cotrects osteope-
nia and an otherwise stunted somatic growth.s1.62
In 9 patients diagnosed with incomplete (ie, non-
acidotic) renal tubular acidosis, supplement K-ci-
trate induced an increase in bone density.6? Reduc-
tions of extracellular pH and HCO; ™ concentration
are potent and independent signals for stimulation
of bone resorption and inhibition of bone forma-
tion% (Fig). The mammalian skeleton provides a
large reservoir of basic calcium salts whose titra-
tion mitigates acid-induced reductions in blood pH
and bicarbonate concentration, but at the potential
cost of diminished bone mass. Even in normal
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people, the renal acidification process does not
completely dispatch the normal nonvolatile acid
load generated endogenously from dietary precur-
sors.>38 As a consequence, (1) the plasma HCO3™
concentration is titrated to a value slightly lower
than would otherwise occur, and (2) some fraction
of the endogenous acid load is buffered by basic
bone salts such that calcium is chronically mobi-
lized from bone and excreted. Accordingly, over a
period of years in the normally aging human, pro-
gressive bone loss might result in part from con-
tinuing low-grade metabolic acidosis and pro-
longed titration of alkaline skeletal calcium salts
by acid generated from dietary precursors.5

Several observations support this formulation. In
normal human subjects: (1) blood pH and plasma
HCO,~ concentration decrease slightly but signif-
icantly as endogenous acid production is increased
over a normal range by dietary manipulation3; (2)
endogenous acid production often exceeds net acid
excretions-38; and (3) with aging, plasma HCO;™
decreases, and the serum concentration of Cl~
increases, reflecting the low-grade metabolic aci-
dosis recently shown to attend the age-related de-
cline of normal renal function and acidification
capacity.*6 World-wide, the incidence of hip frac-
tures correlates directly with the ingestion of meat
protein,5 which is, as noted, a major source of
endogenous nonvolatile acid. These and other ob-
servations and considerations suggest the follow-
ing hypothesis: In aging humans the ‘‘normal’’
progressive loss of bone mass will be attenuated by
KHCO, supplemented in an amount sufficient to
titrate the nonvolatile acid that is endogenously
produced. This hypothesis predicts that this
amount of supplemental KHCO; in postmeno-
pausal women will (1) enhance the renal reclama-
tion of calcium and phosphorus and thereby pro-
mote positive calcium and phosphorus balance, (2)
prevent acid titration of calcium-containing base in
bone (and plasma HCO, ™), and thereby (3) dimin-
ish bone resorption, enhance bone formation, and
increase plasma HCO;™ concentration.

We* recently reported a positive test of this
hypothesis in 18 healthy women (aged 51 to 77
years) all of whom were at least 5 years postmeno-
pausal. Under controlled metabolic conditions, the
subjects ate a typical whole-food diet with an en-
dogenous acid production rate predictably produc-
tive of a positive acid balance (80 to 90 mmol per
day per 60 kg body weight). After a control period
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of 6 days and a prior prebalance adaptation of 20
days, KHCO; (60 to 90 mmol per day per 60 kg
body weight) was administered for 16 days as a
liquid supplement in divided amounts with meals.

Supplemental KHCO; (1) increased the plasma
HCO,~ concentration and pH only slightly, and to
values that remained well within the normal range,
but virtually abolished net renal acid excretion; (2)
improved external balance of calcium and phos-
phorus because of sustained reductions in their
urinary excretion rates; (3) improved phosphorus
balance sufficiently in relation to calcium so that
retention of calcium as hydroxyapatite would not
have been curtailed; (4) reduced the urinary excre-
tion of hydroxyproline, a biochemical marker of
the rate of bone resorption; and (5) increased the
serum concentration of osteocalcin, an osteoblast-
produced protein and biochemical marker of bone
formation.

These conclusions were drawn: (1) In postmeno-
pausal women, short-term supplemental KHCOj; in
amounts just sufficient to dissolve endogenous acid
production can reduce the rate of bone resorption,
increase the rate of bone formation, and reduce
bone mass lost in defense of acid-base homeosta-
sis. (2) Dietary supplements of KHCO, may be
effective in the prevention and treatment of osteo-
pOrosis.

Stroke

In a 12-year prospective study of 859 upper-
middle-class white subjects, all over 50 years of
age, and residing in the contained community of
Rancho Bernardo, California, Khaw and Barret-
Connoré” found that the incidence of stroke death
varied inversely with the dietary intake of potas-
sium independent of BP. It could be calculated that
increasing dietary potassium by 10 mmol per day
within the normal range would reduce the inci-
dence of stroke death by 40%.57 In an 8-year
prospective study of 43,738 men in the United
States, 40 to 75 years of age, Ascherio et al®®
recently reported a similar inverse relationship be-
tween dietary K* intake and the occurrence of
stroke. The inverse relationship was stronger in
hypertensive than in normotensive men. In those
taking diuretics, the intake of K™ as a supplement
was also inversely related to risk of stroke. To-
bian'® has emphasized that the incidence of stroke
world-wide varies inversely with dietary intake of
K™. If deficient dietary K™ and HCO; ™ are major
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determinants of the occurrence of both stroke and
osteoporosis, one might expect that elderly women
with reduced bone density might be at increased
risk of stroke. In fact, Browner et al%® have recently
reported that ambulatory elderly women with low
bone density are at increased risk of stroke, and the
risk is substantial. Each standard deviation de-
crease in bone mineral density of the calcanens and
proximal radius was associated with at 1.3-fold
increase in stroke. The magnitude of the increase in
risk is comparable to that observed for the relation
between systolic BP and stroke in the elderly,
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